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Abstract
The results of Stern–Gerlach experiments on free clusters of Fe, Co, and Ni
are usually interpreted in terms of magnetic moments that show oscillations
as a function of cluster size. We demonstrate that the observed behaviour
can be more convincingly explained in terms of magnetic anisotropy energies
(MAEs) that oscillate with the size of the clusters. The magnitudes of the
estimated MAEs are in reasonably good agreement with the experimental results
for supported/embedded cluster assemblies. The oscillation of the MAE of a
cluster with respect to its size may reveal the geometrical shell structures of
free transition metal clusters.

A better understanding of magnetism in transition metal clusters is crucial not only for
fundamental physics but also for potential applications in high density data storage devices.
One of the central issues in this context is the evolution of magnetic anisotropy energies
(MAEs) from single atoms via clusters to bulk metals [1–3]. The MAE, which represents the
energy involved in rotating the magnetization from a low energy direction (easy axis) to a high
energy direction (hard axis), determines the low temperature orientation of the magnetization
with respect to the structure of the system. It has been found that the MAEs of clusters are
enhanced compared to the bulk values because of a strong anisotropy induced at the surface
of the clusters.

Most of the experimental studies on nanosized grains have been carried out on large
assemblies of particles [1–4], where distributions of particle sizes, shapes, and defects render
the interpretations quite difficult. Very recently, the MAE of a single cobalt nanoparticle
embedded in niobium was investigated by using a micro-SQUID setup [5]. From a fundamental
point of view, it is important to study the MAEs of isolated particles. However, in state-of-
the-art experimental techniques, no direct measurement of the MAEs of isolated clusters is
available.

Molecular beam deflection measurements [6–9] in a magnetic field gradient are widely
used to extract the magnetic moments of free clusters from the Langevin function [8, 10]. The
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experimentally determined saturated moments of Fe, Co, and Ni clusters oscillate with the
cluster size, and the period is about one atomic layer [6]. This oscillation has stimulated strong
interest in searching for magnetic shell structures. In the magnetic shell model developed by
Jensen and Bennemann [11], the individual magnetic moments of atoms at different sites are
determined by their local atomic coordinations. A pure electronic shell model [12] was also
proposed to explain the moment oscillation. The oscillations experimentally observed are not
in general reproduced in these magnetic shell models. Especially when the cluster size is
large (N > 200), the predicted amplitudes of oscillations are too small. Electronic structure
calculations [13–16] using tight-binding (TB) models have been performed to obtain the spin
moments. For larger N (>200), contrary to the experimental observation, the predicted spin
moments decrease smoothly with increasing cluster size, without any obvious oscillation.

It has been shown that, due to the presence of magnetic anisotropy, the effective moment of
embedded/supported clusters deviates from classical Langevin behaviour [17, 18]. Recently,
we have proposed a simple model to estimate the effective moment of free clusters in a
magnetic field. Compared with a supported/embedded cluster assembly, the effect of magnetic
anisotropy on free clusters is significantly enhanced [19]. The model can in principle be used
to evaluate the MAE of a cluster, although it has been claimed that the MAEs of isolated
superparamagnetic clusters cannot be measured by Stern–Gerlach experiments [20].

The purpose of this letter is to show that the apparent oscillations of the magnetic moments
present in the experiment [6] can be properly analysed by taking the MAE into account. The
MAEs of free Fe, Co, and Ni clusters are estimated under various reasonable experimental
conditions and theoretical postulates. The estimated MAEs are in reasonably good agreement
with the experimental results for supported/embedded cluster assemblies, which verifies the
validity of our theoretical model.

The average magnetic moment µ of a single domain N-atom cluster is extracted in
Stern–Gerlach experiments [6, 7] from µeff , which is the projection of µ along the axis of
magnetic field H. In the simplest picture, the cluster moments are subject to rapid orientational
fluctuations. The moments can explore the full distribution of projections onto the field axis
within the timescale of the experiment, and the effective moment µeff is given by the Langevin
function [8, 10]

µeff

µ
= coth(ξ) − 1

ξ
, (1)

where ξ = NµH/kBTvib and Tvib is the internal vibrational temperature of the cluster.
Equation (1) is valid only when kBTvib � Ea, where Ea is the MAE of a cluster. The

energy of a single ferromagnetic particle with uniaxial anisotropy in an external field H is
composed of Zeeman energy −NµH [e ·h] and anisotropy energy −Ea[e ·k]2, where e, h, and
k are the unit vectors along the directions of µ, H, and magnetic easy axis, respectively. The
magnetization m in thermal equilibrium can be obtained readily as a function of θh [18, 19],
which is the angle between h and k. In obtaining a generalization of the Langevin expression
in the presence of MAE, an average over all easy axis orientations has to be performed,

〈m〉 =
∫ π/2

0
dθh ρ(θh) sin θhm(θh), (2)

where ρ(θh) is the probability of the easy axis making an angle θh with H. The magnetization
m(θh) oscillates about the Langevin value, with a maximum at θh = 0 and a minimum at
θh = π/2. The amplitude of oscillations increases with increasing σ = Ea/kBTvib [19].

For a randomly oriented system like the embedded cluster assembly, ρ(θh) ≡ 1. The
deviation of µeff from classical Langevin behaviour only becomes obvious when ξ > 1 and
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σ > 2 [17, 18]. The quenched effect of anisotropy results from cancellations that occur when
averages are taken over different alignment angles.

The free clusters arrive from the cluster generation process rotating rapidly [8, 21]. For
a free rotating cluster, the probability ρ will depend on θh [19]. Generally, the cluster stays
for a longer time at θh = π/2 than at 0. When averaging over the time taken for the cluster to
pass through the magnetic field, the magnetization is effectively reduced because it reaches its
minimum value at θh = π/2 [19]. For well determined vibrational and rotational temperatures,
the MAEs can be evaluated from the available magnetization curves of the Stern–Gerlach
experiments.

Both the magnetic shell models [11, 12] and electronic structure calculations [13–16]
predicted that the average magnetic moment µ(N) of a cluster is insensitive to the cluster
size for N > 200. The magnetic moment of a surface atom is larger than that of a bulk
atom because of reduced atomic coordinations [22]. From simple physical considerations, the
average moment per atom is given by [11]

µ(N) = µbulk + �µN−1/3, (3)

where �µ is proportional to the difference between the moment of a surface atom µsurf and
that of a bulk atom µbulk, with a prefactor of 6.0 for a cube and 4.8 for a sphere. Obviously,
we do not expect that the simple postulate can describe the variation of the magnetic moment
with cluster size precisely. However, the general trend of the variation must be well captured,
particularly when the cluster size is relatively large.

Using the assumed magnetic moment values as described in equation (3), we can calculate
from equation (2) the effective moment of a cluster under different experimental conditions and
for various values of MAE. Using equation (1), the effective moments measured experimentally
can be deduced from the extracted moments [6]. The MAE of a cluster is determined by varying
its value in equation (2) until the effective moments obtained by both procedures are equal.

The experimental magnetic moments [6] of Fe, Co, and Ni clusters, which are shown as
open squares in figure 1, are extracted from equation (1) for small values of ξ (say ξ � 1)
without taking the MAEs into account [7]. For non-aligned particles like the embedded cluster
assembly, the theoretical magnetization curves are superimposed for ξ � 1 independently
of the anisotropy strength σ [18]. However, for free clusters, the deviation from Langevin
behaviour appears at much smaller values of ξ (<0.5) [19]. Extracting µ from a Stern–Gerlach
experimental µeff of a cluster ignoring the MAE underestimates the magnetic moment. As
shown in figure 1, the experimental extracted moments can even be below the bulk values,
namely 2.2 µB for Fe, 1.72 µB for Co, and 0.606 µB for Ni [23] (see, in particular, the plots for
Co and Ni). The moments of clusters predicted by the magnetic shell model [11] or electronic
structure calculations [13–16] are always larger than the bulk values. Including the anisotropy
in calculating the effective moments will certainly push the extracted moments above the bulk
values, and thus yield the physically expected behaviour.

Assuming the magnetic moments of clusters as described in equation (3), we can calculate
the effective moments µeff of clusters under different values of ξ and σ . In order to compare
with the experimental extracted magnetic moments, we have calculated the corresponding
moments µ from equation (1) with ξ = 1. The magnetic field used in experiment is
0 � H � 7 kG [6]. Correspondingly, the maximum field used in our calculations is 7 kG, i.e. ξ
may be smaller than 1 for small cluster sizes N . As shown in figure 1, by adjusting the values
of Ea, our theoretical curves can be brought into excellent agreement with the experimental
data. The evaluated MAEs are depicted in figure 2.

Obviously, the evaluated MAEs depend on the values of �µ in equation (3). The evaluated
MAEs for large clusters (N > 300) are insensitive to the reasonable choice of values of �µ.
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Figure 1. Average magnetic moment per atom for (a) Fe clusters at 120 K, (b) Co clusters at 78 K,
and (c) Ni clusters at 78 K, as a function of the number of atoms in the clusters. The open squares
are experimental results [6] extracted from the Langevin function while the continuous curves are
extracted from the Langevin function using µeff calculated for free rotating clusters with uniaxial
anisotropy and µ(N) given by equation (3).

We have chosen the values of �µ as shown in figure 1. Different choices of �µ do not affect
the general trend and order of magnitude of the MAEs.

The cluster temperature strongly depends on the dwell time inside the source nozzle
with temperature Tnoz, during which the clusters are cooled by the carrier gas He with
temperature THe. The cooling of Trot is much more efficient than that of Tvib, which makes
Tnoz > Tvib > Trot > THe [7, 21]. In the case of long dwell times and therefore Tvib = Tnoz,
the so-called superparamagnetic model was used to extract the magnetic moments [7]. As
shown in figure 2, for each experimental temperature Tnoz, three rotational temperatures are
considered. It was proved previously that [19], for a particular value of Tvib, the effect of
anisotropy increases with decreasing rotational temperature. Roughly the MAEs evaluated at
Trot = 1.0 and 0.2 correspond to the upper and lower bounds.

The magnitude of the evaluated MAEs of free clusters is one or two orders of magnitude
larger than the corresponding bulk values, which are 1.4, 1.3, and 2.7 µ eV/atom respectively
for bcc Fe, fcc Co, and fcc Ni [24]. The evaluated MAEs of free Fe clusters are in
reasonable agreement with the experimentally determined value (∼0.1 meV/atom) from
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Figure 2. Size dependence of the effective anisotropy constants for (a) Fe, (b) Co, and
(c) Ni clusters. Three different rotational temperatures (1.0, 0.6, and 0.2 in units of vibrational
temperature) are considered.

magnetization measurements on granular alloys of Fe in matrices [25]. As shown in figure 2,
the effective anisotropy constants Keff (MAEs per atom in the uniaxial anisotropy) decrease
slowly with increasing cluster size, which is in good agreement with the experimental results
for supported/embedded cluster assemblies [1–3]. The MAEs of nanoparticles of metallic iron
on carbon supports has been determined by use of Mössbauer spectroscopy [1]. Keff increases
from 7.5 to 22 µeV/atom with decreasing particle diameter from 6 nm (∼10 000 atoms) to
2 nm (∼350 atoms). A recent study of the magnetic properties of spherical Co clusters with
diameters between 0.8 nm and 5.2 nm (25–7000 atoms) embedded in Al2O3 show that Keff is
enhanced with respect to the bulk value and that it is dominated by a strong anisotropy induced
at the surface of the clusters [3]. Keff decreases from 160 to 25 µeV/atom with increasing
cluster size N from 25 to 7000 atoms. Our evaluated MAE for a Co cluster with N ≈ 700 is
in good agreement with that (∼20 µeV/atom) of a single 1000-atom Co cluster embedded in
a niobium matrix [5]. We believe the evaluated values of MAEs of free clusters are reasonable
and realistic.

By ignoring the effect of magnetic anisotropy, the size dependence of experimentally
extracted magnetic moments presents some obvious oscillations [6]. As shown in figures 1
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and 2, the spurious moment oscillations can be well captured by the oscillations of the MAEs.
The experimentally observed peaks of moments actually correspond to the dips of MAEs. The
oscillation of the MAE can be seen from the experimental size dependence of the effective MAE
constants of supported/embedded clusters [1–3], although it was supposed to be proportional
to the inverse particle diameter [1]. Because the effect of magnetic anisotropy on free clusters
is significantly enhanced compared with that on supported clusters [19], it is possible to
demonstrate the oscillation of MAE more clearly by careful Stern–Gerlach measurements
on free clusters.

The systems that are close packed in bulk have a structure that is more clearly defined
than the bcc ones such as Fe. Small clusters of Co or Ni adopt an icosahedral structure, with a
characteristic filling clearly evident in experiments [27]. For larger sizes, cobalt nanoparticles
form mainly truncated octahedra [5]. The cuboctahedron, an octahedron truncated by a cube,
can have two forms [28], one with triangular (111) facets (T-cubo), the other with hexagonal
(111) facets (H-cubo). The T-cubo has the same closed shell sequence as the icosahedron, 13,
55, 147, 309, 561, while the H-cubo has the closed shell sequence of 38, 201, 586. From simple
symmetry considerations, the MAEs of perfect polyhedra with high symmetry, for which the
second order terms are forbidden, are very small [26]. From experimental observation [5, 28],
after a closed shell configuration, the clusters grow by the filling of successive facets. Clusters
with a size between two perfect polyhedra will generally have a lower symmetry. Consequently,
the MAEs are much larger than those of clusters with perfect polyhedral configurations. We
expect that the magnitude of MAE will oscillate with the cluster size N with minima at close
shells, which let the experimental extracted moments [6] exhibit oscillation, with maxima at
N corresponding to close shells. As shown in figure 1, there is a peak around 561–586 for Co
and Ni clusters and a dip around 480 for Co clusters (400 for Ni clusters) in the experimentally
extracted magnetic moments [6], which correspond perfectly to the MAE minimum and
maximum if the cluster grows via facet filling. Other possible moment maxima are around
N = 147, 201, 309. All maxima correspond to the complete icosahedral or cuboctahedral
structures. For Fe clusters, the moments oscillate with maxima near N = 325 and 625. All
these maxima presented in magnetic moments correspond to the minima of MAEs of the
clusters, which can be seen from figure 2. Although some of the minima in the MAE can be
associated with closed shell structures, it must be remembered that experimentally there is a
width to the cluster size distribution, and making an unambiguous assignment for the smaller
clusters (N < 200) would be very tentative.

To show how the MAEs of clusters change with symmetry, we have calculated the MAEs
of Co201 and Co209 clusters using a TB model [16]. We only consider the contribution from
spin–orbital coupling. The contribution to MAE from magnetic dipole interactions is very
small in the clusters considered. As shown in figure 3, Co201 is a perfect truncated octahedron
while Co209 is constructed from Co201 by adding one layer on the top and bottom squares. The
average magnetic moments (sum of spin and orbital moments) of the two clusters are almost
equal. However, the MAE of Co209 is one order of magnitude larger than that of Co201, which
has an Oh symmetry. The additional layers lower the symmetry of Co209 to D4h. We can see
very clearly that the MAE is very sensitive to the symmetry of the clusters. The calculated
MAE of Co209 is within the range of the evaluated ones. The details of the calculations will
be presented elsewhere.

In summary, the magnetic moment oscillation presented in the Stern–Gerlach experimental
results of free Fe, Co, and Ni clusters can be well captured by the oscillation of the MAEs,which
can be well explained by the cluster growth pattern of successive filling of the polyhedral facets.
The failure of previous magnetic shell models or electronic structure calculations to account
for the oscillation of the magnetic moment for larger clusters is due to ignoring the effect of
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Figure 3. Total average magnetic moments µtot and MAEs calculated from TB models for (a) Co201
and (b) Co209. Co209 is constructed from Co201 by adding one layer (shadowed atoms) to the top
and bottom squares.

magnetic anisotropy. Importantly, the inclusion of MAE into the analysis avoids extracted
cluster moments with values lower than those of the bulk. The values of the evaluated MAEs
are reasonable and realistic, comparable to the values determined for the supported/embedded
cluster assemblies. The effective anisotropy energy constants decrease slowly with increasing
cluster sizes.

The effect of magnetic anisotropy on free clusters is significantly enhanced. Further
experiments on free clusters are needed to confirm the prediction of MAE oscillation with
cluster size. The fascinating oscillation of MAE with cluster size can be used to control the
magnetic properties of cluster assembly based materials, such as hard or soft magnets.

This work was supported by the EU through the AMMARE project (Contract No G5RD-CT-
2001-00478) under the Competitive and Sustainable Growth Programme.
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